AbstractObjectives:This study aimed to evaluate the effects of microparticles of Socheongryong-tang (SCRT) on chronic obstructive pulmonary disease (COPD) in a mouse model.
Methods:The inhalable microparticles containing SCRT were produced by spray-drying with leucine as an excipient, and evaluated with respect to the aerodynamic properties of the powder by Andersen cascade impactor (ACI). Its equivalence to SCRT extract was evaluated using lipopolysaccharide (LPS) and a cigarette-smoking (CS)-induced murine COPD model.
Results:SCRT microparticles provided desirable aerodynamic properties (fine particle fraction of 49.6±5.5% and mass median aerodynamic diameter of 4.8±0.3 μm). SCRT microparticles did not show mortality or clinical signs over 14 days. Also there were no significant differences in body weight, organ weights or serum chemical parameters between SCRT microparticle-treated and non-treated groups. After 14 days the platelet count significantly increased compared with the non-treated group, but the values were within the normal range. Inhalation of SCRT microparticles decreased the rate of neutrophils in blood, granulocytes in peripheral blood mononuclear cells (PBMC) and bronchoalveolar lavage fluid (BALF) and level of TNF-α and IL-6 in BALF on COPD mouse model induced by LPS plus CS. This effect was verified by histological findings including immunofluorescence staining of elastin, collagen, and caspase 3 protein in lung tissue.
References1.. Statistics Korea. Cause of death statistics 2011. 2012. [2screens]. Available at: URL:http://kosis.kr/ups/ups_01List01.jsp?pubcode=YD. Accessed Sep 20, 2012.
2.. Mannino, DM, & Kiriz, VA. Changing the burden of COPD mortality. Int J Chron Obstruct Pulmon Dis, (2006). 1(3), 219-33.
![]() ![]() ![]() 3.. Mannino, DM. COPD: epidemiology, prevalence, morbidity and mortality, and disease heterogeneity. Chest, (2002). 121, 121S-26S.
![]() ![]() 4.. Celli, BR, & MacNee, W. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J, (2004). 23(6), 932-46.
![]() ![]() 5.. Barnes, PJ, & Hansel, TT. Prospects for new drugs for chronic obstructive pulmonary disease. Lancet, (2004). 364(9438), 985-96.
![]() ![]() 6.. Jung SK, Jung HJ, Kim JD, Choi HY, Park MY, Park YC, et al. Pye-gye-nae-gwa-hak. Seoul. Nado;(2011). p. 510-1.
7.. Lee, H, Kim, Y, Kim, HJ, Park, S, Jang, YP, & Jung, S, et al. Herbal Formula, PM014, Attenuates Lung Inflammation in a Murine Model of Chronic Obstructive Pulmonary Disease. Evid Based Complement Alternat Med, (2012). 2012, 769830. Epub 2012 Jun 12.
![]() ![]() ![]() 8.. Lee, JG, Yang, SY, Kim, MH, Namgung, U, & Park, YC. Protective effects of Socheongryong-tang on Elastase-Induced Lung Injury. J Korean Oriental Med, (2011). 32(4), 83-99.
9.. Yoon, JM, & Park, YC. Protective effects of Seonpyejeongcheon-tang on Elastase-induced Lung Injury. J Korean Oriental Med, (2010). 31(1), 84-101.
10.. Choi, HJ, Bang, NY, Song, BW, Kim, NJ, & Rhyu, BH. Survey on the preference for the dosage forms of oriental herbal medicine. Kyunghee Medicine, (2004). 20(1), 46-57.
11.. Derendorf, H, Nave, R, Drollmann, A, Cerasoli, F, & Wurst, W. Relevance of pharmacokinetics and pharmacodynamics of inhaled corticosteroids to asthma. Eur Respir J, (2006). 28(5), 1042-50.
![]() ![]() 12.. Courrier, HM, Butz, N, & Vandamme, TF. Pulmonary drug delivery systems: recent developments and prospects. Crit Rev Ther Drug Carrier Syst, (2002). 19(4–5), 425-98.
![]() ![]() 13.. Zhang, J. Shang-han-za-bing-lun. Shijiazhuang. Hebei Kezue Jishu Chubanshe, (1994). 27.
14.. Jung, S, Cho, SJ, Moon, KI, Kim, HW, Kim, BY, & Cho, SI. Effects of Socheongryong-Tang on Immunoglobulin Production in Asthmatic Mice. Kor. J. Herbology, (2008). 23(1), 23-8.
15.. Kim, KY, Lee, JH, Kim, YJ, Choi, SY, Kim, TH, & Lyu, YS, et al. Anti-allergic effects of Socheongyoung-tang on RBL-2H3 mast cell and mice-mediated allergy model. Korean J. Oriental Physiology & Pathology, (2007). 21(5), 1260-70.
16.. Hwang, WS, Lee, JS, Choi, JY, Jung, HJ, Rhee, HK, & Jung, SK. Two Cases of Chronic Sinusitis with Asthma Improved by Socheongryong-tang. J Korean Oriental Med, (2003). 24(1), 207-12.
17.. Jung, SK, Heo, TS, Hwang, WS, Ju, CY, Kim, YW, & Jung, HJ. The Effects of Sochongryong-tang on Serum IL-4, IL-5, and IFN-ɣ in asthmatic Patients. J Korean Oriental Med, (2002). 23(2), 70-7.
18.. Ibrahim, BM, Jun, SW, Lee, MY, Kang, SH, & Yeo, Y. Development of inhalable dry powder formulation of basic fibroblast growth factor. Int J Pharm, (2010). 385(1–2), 66-72.
![]() ![]() 19.. Thiel, CG. Cascade impactor data and the log-normal distribution: nonlinear regression for a better fit. J Aerosol Med, (2002). 15(4), 369-78.
![]() ![]() 20.. Nemzek, JA, Bolgos, GL, Williams, BA, & Remick, DG. Differences in normal values for murine white blood cell counts and other hematological parameters based on sampling site. Inflamm Res, (2001). 50(10), 523-7.
![]() ![]() 21.. Hillery AM, Lloyd AW, Swarbrick J. Drug delivery and targeting; for pharmacists and pharmaceutical scientists. London. Taylor and Francis;(2001). p. 2
22.. Tayab, ZR, & Hochhaus, G. Pharmacokinetic/pharmacodynamic evaluation of inhalation drugs: application to targeted pulmonary delivery systems. Expert Opin Drug Deliv, (2005). 2(3), 519-32.
![]() ![]() 23.. Rabe, KF, Hurd, S, Anzueto, A, Barnes, PJ, Buist, SA, & Calverley, P, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med, (2007). 176(6), 532-55.
![]() ![]() 24.. Geller, DE. Comparing clinical features of the nebulizer, metered-dose inhaler, and dry powder inhaler. Respir Care, (2005). 50(10), 1313-21.
![]() 25.. Borgstrom, L. On the use of dry powder inhalers in situations perceived as constrained. J Aerosol Med, (2001). 14(3), 281-7.
![]() ![]() 26.. Yang, Y, Tsifansky, MD, Shin, S, Lin, Q, & Yeo, Y. Mannitol-guided delivery of Ciprofloxacin in artificial cystic fibrosis mucus model. Biotechnol Bioeng, (2011). 108(6), 1441-9.
![]() ![]() 27.. Yang, Y, Tsifansky, MD, Wu, CJ, Yang, HI, Schmidt, G, & Yeo, Y. Inhalable antibiotic delivery using a dry powder co-delivering recombinant deoxyribonuclease and ciprofloxacin for treatment of cystic fibrosis. Pharm Res, (2010). 27(1), 151-60.
![]() ![]() 29.. Azarmi, S, Lobenberg, R, Roa, WH, Tai, S, & Finlay, WH. Formulation and in vivo evaluation of effervescent inhalable carrier particles for pulmonary delivery of nanoparticles. Drug Dev Ind Pharm, (2008). 34(9), 943-7.
![]() ![]() 30.. Molfino, NA, & Jeffery, PK. Chronic obstructive pulmonary disease: Histopathology, inflammation and potential therapies. Pulm Pharmacol Ther, (2007). 20(5), 462-72.
![]() ![]() 31.. Yoo, CG. Pathogenesis and pathophysiology of COPD. The Korean Journal of Medicine, (2009). 77, 383-400.
32.. Niewoehner, DE, Kleinerman, J, & Rice, DB. Pathologic changes in the peripheral airways of young cigarette smokers. N Engl J Med, (1974). 291(15), 755-8.
![]() ![]() 33.. Schaberg, T, Haller, H, Rau, M, Kaiser, D, Fassbender, M, & Lode, H. Superoxide anion release induced by platelet-activating factor is increased in human alveolar macrophages from smokers. Eur Respir J, (1992). 5(4), 387-93.
![]() 34.. Wright, JL, Cosio, M, & Churg, A. Animal models of chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol, (2008). 295(1), L1-15.
![]() ![]() ![]() 35.. Wright, JL, & Sun, JP. Effect of smoking cessation on pulmonary and cardiovascular function and structure: analysis of guinea pig model. J Appl Physiol, (1994). 76(5), 2163-8.
![]() 36.. Yang, IA, Clarke, MS, Sim, EH, & Fong, KM. Inhaled corticosteroids for stable chronic obstructive pulmonary disease. Cochrane Database Syst Rev, (2012). 7, CD002991.
![]() 37.. Tanino, M, Betsuyaku, T, Takeyabu, K, Tanino, Y, Yamaguchi, E, & Miyamoto, K, et al. Increased levels of interleukin-8 in BAL fluid from smokers susceptible to pulmonary emphysema. Thorax, (2002). 57(5), 405-11.
![]() ![]() ![]() 38.. Keatings, VM, Collins, PD, Scott, DM, & Barnes, PJ. Differences in interleukin-8 and tumor necrosis factor-alpha in induced sputum from patients with chronic obstructive pulmonary disease or asthma. Am J Respir Crit Care Med, (1996). 153(2), 530-4.
![]() ![]() |
|