Korean Medicine Non-clinical Study Center, National Development Institute of Korean Medicine
Correspondence to: Jong-Hyun Nho, Korean Medicine Non-clinical Study Center(GLP), National Development Institute of Korean Medicine, Wondogwandeok-gil 27, 59319, Jangheung-eup, Jangheung-gun, Jeollanam-do, Republic of Korea, Tel: +82-61-860-2873, E-mail: nhopaper@gmail.com
Received June 11, 2024 Revised August 5, 2024 Accepted August 19, 2024
Abstract
Objectives
This study aimed to investigate whether Ligigeopoong-san induces acute toxicity and genotoxicity
Methods
Ligigeopoong-san contains the rhizome of Cnidium officinale MAKINO, an herb with potential teratogenicity. Teratogenicity is closely associated with genotoxicity. We analyzed whether Ligigeopoong-san induces acute toxicity and genotoxicity using various experimental models in accordance with Korean non-clinical test standards for pharmaceuticals and OECD test guidelines.
Results
When Ligigeopoong-san was administered as a single dose to male and female rats, no toxic reactions, including organ damage, were observed at doses up to 2,500 mg/kg. In the bacterial reverse mutation test, no DNA mutations were detected at concentrations up to 5,000 μg/plate. In cell models, Ligigeopoong-san did not induce structural or numerical chromosomal aberrations at concentrations up to 2,000 μg/mL. Additionally, in animal studies, it did not cause bone marrow toxicity or form micronuclei in erythrocytes at doses up to 2,000 mg/kg.
Conclusions
The experiments using various models demonstrated that Ligigeopoong-san did not induce acute toxicity or genotoxicity.
Root of Saposhnikovia divaricata (Turcz.) Schischkin
3
6.25
China
2.5
9.0
-
-
-
Suitable
Suitable
1
9
Root of Paeonia lactiflora Pallas
3
6.25
Korea
2.8
3.0
-
Albiflorin + Paeoniflorin
3.80
Suitable
Suitable
1
10
Root of Angelica dahurica Bentham et Hooker
3
6.25
Korea
6.9
3.9
-
Oxypeucedanin + Imperatorin + Isoimperatorin
-
Suitable
Suitable
1
11
Root of Lindera strichnifolia Fernandez-Villar
3
6.25
China
0.6
11.4
-
-
-
Suitable
Suitable
1
12
Pericarp of Citrus unshiu Markovich
3
6.25
China
2.2
7.8
-
Hesperidin
14.3
Suitable
Suitable
1
13
Rhizome of Cnidium officinale MAKINO
3
6.25
Korea
4.4
2.0
-
-
-
Suitable
Suitable
2
14
Rhizome of Gastrodia elata Blume
3
6.25
China
2.9
7.7
-
Gastrodin + Gastrodigenin
-
Suitable
Suitable
1
15
Immature pericarp of Citrus unshiu Markovich
3
6.25
China
3.3
16.2
-
-
-
Suitable
Suitable
1
16
Floral axis of Schizonepeta tenuifolia Briquet
3
6.25
Korea
6.0
19.2
-
-
-
Suitable
Suitable
1
48.0
100
* 1: Hyeongyoul Pharmaceuticals (Gyeonggi Province, Republic of Korea) 2: Hando Pharmaceuticals (Gyeonggi Province, Republic of Korea) 3: Puleunmuyak Pharmaceuticals (Seoul, Republic of Korea) 4: Kwangduk Pharmaceuticals (Chungnam Province, Republic of Korea).
Table 2
Results of the acute toxicity assessment
Sex: Male
(g)
Group
Animal
Day
0
1
3
7
14
Negative control
1
215.9
247.8
272.4
305.4
363.5
2
235.8
266.3
295.4
337.9
421.0
3
218.9
252.2
279.4
317.7
384.6
4
222.1
254.4
279.0
313.2
376.4
5
223.1
258.0
285.6
324.7
405.5
Mean
223.2
255.7
282.4
319.8
390.2
S.D
7.6
7.0
8.7
12.3
23.0
Ligigeopoong-san (625 mg/kg)
1
232.7
263.1
288.3
318.3
385.4
2
231.0
269.5
300.8
339.7
415.6
3
223.3
255.2
285.1
318.7
373.6
4
233.0
267.5
294.7
334.2
411.8
5
225.3
259.0
281.8
314.5
378.4
Mean
229.1
262.9
290.1
325.1
393.0
S.D
4.5
5.9
7.6
11.1
19.4
Ligigeopoong-san (1,250 mg/kg)
1
230.5
268.6
300.1
345.4
429.9
2
220.7
255.0
275.6
316.1
386.2
3
221.2
258.1
247.4
326.7
391.3
4
223.7
259.5
280.2
313.7
389.6
5
226.7
261.3
283.2
331.4
402.1
Mean
224.6
260.5
277.3
326.7
399.8
S.D
4.1
5.1
19.1
12.8
17.8
Ligigeopoong-san (2,500 mg/kg)
1
229.4
262.3
290.5
322.5
382.8
2
233.0
268.8
293.3
326.7
398.9
3
221.6
258.8
279.0
309.2
363.5
4
217.9
255.8
279.8
317.0
396.3
5
221.7
258.0
285.0
277.8
362.5
Mean
224.7
260.7
285.5
310.6
380.8
S.D
6.2
5.1
6.3
19.5
17.4
Sex: Female
(g)
Group
Animal
Day
0
1
3
7
14
Negative control
1
168.6
193.1
197.2
220.8
250.4
2
152.3
174.6
187.7
202.4
230.2
3
153.2
176.0
186.5
196.8
219.2
4
157.1
182.1
196.3
200.8
225.7
5
157.9
183.6
193.4
206.5
231.3
Mean
157.8
181.9
192.2
205.5
231.4
S.D
6.5
7.4
4.9
9.3
11.7
Ligigeopoong-san (625 mg/kg)
1
172.5
196.3
215.2
236.6
274.7
2
154.8
175.6
187.6
201.2
232.7
3
154.7
177.8
193.5
206.5
235.5
4
152.4
174.6
188.8
201.7
232.7
5
163.4
187.3
193.7
196.2
221.8
Mean
159.6
182.3
195.8
208.4
239.5
S.D
8.4
9.3
11.2
16.2
20.4
Ligigeopoong-san (1,250 mg/kg)
1
164.9
190.8
203.6
213.0
245.0
2
151.7
171.7
184.5
189.9
222.3
3
161.5
181.6
195.8
215.2
249.8
4
158.3
180.6
189.6
201.3
219.4
5
160.4
177.9
196.5
207.1
238.6
Mean
159.4
180.5
194.0
205.3
235.0
S.D
4.9
6.9
7.3
10.2
13.6
Ligigeopoong-san (2,500 mg/kg)
1
152.9
176.7
181.8
188.5
212.7
2
165.3
189.6
203.4
225.3
266.3
3
152.8
178.9
190.6
197.6
225.7
4
157.3
179.9
196.0
208.5
238.2
5
155.0
180.3
195.3
212.2
243.4
Mean
156.7
181.1
193.4
206.4
237.3
S.D
5.2
5.0
7.9
14.1
20.1
S.D (Standard deviation)
Table 3
Results of the bacterial reverse mutation test without metabolic activation system
Strain
Dose (μg/plate)
Primary experiment
Secondary experiment
PPT
TOX
Revertant colony
Mean
S.D
Ratio
PPT
TOX
Revertant colony
Mean
S.D
Ratio
1
2
3
1
2
3
TA98
0
-
-
19
25
18
21
3.8
[1.0]
-
-
17
17
13
16
2.3
[1.0]
6.86
-
-
18
25
25
23
4.0
[1.1]
-
-
-
-
-
-
-
-
20.6
-
-
17
24
23
21
3.8
[1.0]
-
-
-
-
-
-
-
-
61.7
-
-
25
27
24
25
1.5
[1.2]
-
-
11
8
14
11
3.0
[0.7]
185.2
-
-
25
26
18
23
4.4
[1.1]
-
-
13
19
14
15
3.2
[1.0]
555.6
-
-
21
18
27
22
4.6
[1.1]
-
-
11
12
20
14
4.9
[0.9]
1,666.7
-
-
17
18
24
20
3.8
[1.0]
-
-
18
14
22
18
4.0
[1.1]
5,000.0
-
-
18
25
21
21
3.5
[1.0]
-
-
25
22
19
22
3.0
[1.4]
2-NF (0.5)
-
-
160
129
145
145
15.5
[7.0]
-
-
160
287
116
188
88.8
[12.0]
TA100
0
-
-
108
93
109
103
9.0
[1.0]
-
-
81
68
81
77
7.5
[1.0]
6.86
-
-
95
102
91
96
5.6
[0.9]
-
-
-
-
-
-
-
-
20.6
-
-
92
105
107
101
8.1
[1.0]
-
-
-
-
-
-
-
-
61.7
-
-
96
93
96
95
1.7
[0.9]
-
-
81
82
86
83
2.6
[1.1]
185.2
-
-
85
98
95
93
6.8
[0.9]
-
-
87
83
81
84
3.1
[1.1]
555.6
-
-
94
91
94
93
1.7
[0.9]
-
-
73
89
86
83
8.5
[1.1]
1,666.7
-
-
100
103
107
103
3.5
[1.0]
-
-
97
89
87
91
5.3
[1.2]
5,000.0
-
-
100
118
121
113
11.4
[1.1]
-
-
130
115
105
117
12.6
[1.5]
SA (1.0)
-
-
682
726
700
703
22.1
[6.8]
-
-
602
595
644
614
26.5
[8.0]
TA1535
0
-
-
10
9
9
9
0.6
[1.0]
-
-
11
8
9
9
1.5
[1.0]
6.86
-
-
9
9
9
9
0.0
[1.0]
-
-
-
-
-
-
-
-
20.6
-
-
10
10
9
10
0.6
[1.0]
-
-
-
-
-
-
-
-
61.7
-
-
10
8
8
9
1.2
[0.9]
-
-
11
9
11
10
1.2
[1.1]
185.2
-
-
9
8
9
9
0.6
[0.9]
-
-
7
9
11
9
2.0
[1.0]
555.6
-
-
10
8
9
9
1.0
[1.0]
-
-
10
9
9
9
0.6
[1.0]
1,666.7
-
-
9
11
10
10
1.0
[1.1]
-
-
8
10
7
8
1.5
[0.9]
5,000.0
-
-
9
9
11
10
1.2
[1.0]
-
-
9
10
11
10
1.0
[1.1]
SA (1.0)
-
-
490
495
484
490
5.5
[52.5]
-
-
422
459
441
441
18.5
[47.2]
TA1537
0
-
-
6
7
7
7
0.6
[1.0]
-
-
11
12
12
12
0.6
[1.0]
6.86
-
-
8
6
6
7
1.2
[1.0]
-
-
-
-
-
-
-
-
20.6
-
-
6
6
6
6
0.0
[0.9]
-
-
-
-
-
-
-
-
61.7
-
-
6
7
6
6
0.6
[1.0]
-
-
8
9
10
9
1.0
[0.8]
185.2
-
-
6
7
7
7
0.6
[1.0]
-
-
8
10
12
10
2.0
[0.9]
555.6
-
-
7
8
9
8
1.0
[1.2]
-
-
12
9
12
11
1.7
[0.9]
1,666.7
-
-
7
8
7
7
0.6
[1.1]
-
-
12
12
9
11
1.7
[0.9]
5,000.0
-
-
7
10
9
9
1.5
[1.3]
-
-
12
9
14
12
2.5
[1.0]
9-AA (40.0)
-
-
201
236
253
230
26.5
[34.5]
-
-
170
192
216
193
23.0
[16.5]
WP2 uvrA
0
-
-
46
49
42
46
3.5
[1.0]
-
-
50
52
49
50
1.5
[1.0]
6.86
-
-
48
45
46
46
1.5
[1.0]
-
-
-
-
-
-
-
-
20.6
-
-
45
49
43
46
3.1
[1.0]
-
-
-
-
-
-
-
-
61.7
-
-
43
40
42
42
1.5
[0.9]
-
-
41
46
42
43
2.6
[0.9]
185.2
-
-
49
40
46
45
4.6
[1.0]
-
-
36
49
44
43
6.6
[0.9]
555.6
-
-
45
45
45
45
0.0
[1.0]
-
-
39
50
39
43
6.4
[0.8]
1,666.7
-
-
44
41
41
42
1.7
[0.9]
-
-
48
49
50
49
1.0
[1.0]
5,000.0
-
-
45
49
41
45
4.0
[1.0]
-
-
43
52
49
48
4.6
[1.0]
4-NQO (0.5)
-
-
760
736
680
725
41.1
[15.9]
-
-
762
764
680
735
47.9
[14.6]
PPT (Precipitation), TOX (Toxicity to bacteria), S.D (Standard deviation), Ratio (The percentage of the mean value compared to the negative control value)
Table 4
Results of the bacterial reverse mutation test with metabolic activation system
Strain
Dose (μg/plate)
Primary experiment
Secondary experiment
PPT
TOX
Revertant colony
Mean
S.D
Ratio
PPT
TOX
Revertant colony
Mean
S.D
Ratio
1
2
3
1
2
3
TA98
0
-
-
38
30
34
34
4.0
[1.0]
-
-
15
13
20
16
3.6
[1.0]
6.86
-
-
37
33
28
33
4.5
[1.0]
-
-
-
-
-
-
-
-
20.6
-
-
33
31
30
31
1.5
[0.9]
-
-
-
-
-
-
-
-
61.7
-
-
36
33
34
34
1.5
[1.0]
-
-
22
22
13
19
5.2
[1.2]
185.2
-
-
30
31
36
32
3.2
[1.0]
-
-
27
22
13
21
7.1
[1.3]
555.6
-
-
34
38
31
34
3.5
[1.0]
-
-
22
22
14
19
4.6
[1.2]
1,666.7
-
-
38
32
29
33
4.6
[1.0]
-
-
20
17
17
18
1.7
[1.1]
5,000.0
-
-
39
32
38
36
3.8
[1.1]
-
-
27
15
22
21
6.0
[1.3]
2-NF (0.5)
-
-
152
146
136
145
8.1
[4.3]
-
-
156
135
146
146
10.5
[9.1]
TA100
0
-
-
91
82
88
87
4.6
[1.0]
-
-
79
76
77
77
1.5
[1.0]
6.86
-
-
87
92
92
90
2.9
[1.0]
-
-
-
-
-
-
-
-
20.6
-
-
90
97
93
93
3.5
[1.1]
-
-
-
-
-
-
-
-
61.7
-
-
93
93
92
93
0.6
[1.1]
-
-
91
90
96
92
3.2
[1.2]
185.2
-
-
102
100
98
100
2.0
[1.1]
-
-
89
93
93
92
2.3
[1.2]
555.6
-
-
116
105
106
109
6.1
[1.3]
-
-
102
93
92
96
5.5
[1.2]
1,666.7
-
-
100
99
105
101
3.2
[1.2]
-
-
81
110
85
92
15.7
[1.2]
5,000.0
-
-
126
119
103
116
11.8
[1.3]
-
-
89
108
95
97
9.7
[1.3]
SA (1.0)
-
-
670
738
660
689
42.4
[7.9]
-
-
395
479
429
434
42.3
[5.6]
TA1535
0
-
-
9
10
7
9
1.5
[1.0]
-
-
12
10
13
12
1.5
[1.0]
6.86
-
-
10
9
10
10
0.6
[1.1]
-
-
-
-
-
-
-
-
20.6
-
-
10
9
8
9
1.0
[1.0]
-
-
-
-
-
-
-
-
61.7
-
-
10
10
8
9
1.2
[1.1]
-
-
9
10
11
10
1.0
[0.9]
185.2
-
-
8
8
8
8
0.0
[0.9]
-
-
8
11
9
9
1.5
[0.8]
555.6
-
-
9
8
9
9
0.6
[1.0]
-
-
10
11
9
10
1.0
[0.9]
1,666.7
-
-
10
9
11
10
1.0
[1.2]
-
-
12
10
11
11
1.0
[0.9]
5,000.0
-
-
9
11
9
10
1.2
[1.1]
-
-
11
10
12
11
1.0
[0.9]
SA (1.0)
-
-
275
256
231
254
22.1
[29.3]
-
-
272
256
289
272
16.5
[23.3]
TA1537
0
-
-
12
13
11
12
1.0
[1.1]
-
-
13
12
12
12
0.6
[1.0]
6.86
-
-
10
12
10
11
1.2
[0.9]
-
-
-
-
-
-
-
-
20.6
-
-
14
13
15
14
1.0
[1.2]
-
-
-
-
-
-
-
-
61.7
-
-
13
14
15
14
1.0
[1.2]
-
-
14
12
13
13
1.0
[1.1]
185.2
-
-
14
13
15
14
1.0
[1.2]
-
-
9
12
14
12
2.5
[0.9]
555.6
-
-
15
14
14
14
0.6
[1.2]
-
-
12
9
14
12
2.5
[0.9]
1,666.7
-
-
15
13
14
14
1.0
[1.2]
-
-
16
11
15
14
2.6
[1.1]
5,000.0
-
-
15
15
14
15
0.6
[1.2]
-
-
9
11
12
11
1.5
[0.9]
9-AA (40.0)
-
-
380
369
324
358
29.7
[29.8]
-
-
270
209
281
253
38.8
[20.5]
WP2 uvrA
0
-
-
46
46
45
46
0.6
[1.0]
-
-
48
55
50
51
3.6
[1.0]
6.86
-
-
45
42
42
43
1.7
[0.9]
-
-
-
-
-
-
-
-
20.6
-
-
48
39
49
45
5.5
[1.0]
-
-
-
-
-
-
-
-
61.7
-
-
47
43
53
48
5.0
[1.0]
-
-
44
49
46
46
2.5
[0.9]
185.2
-
-
49
40
45
45
4.5
[1.0]
-
-
44
50
50
48
3.5
[0.9]
555.6
-
-
39
39
47
42
4.6
[0.9]
-
-
51
50
53
51
1.5
[1.0]
1,666.7
-
-
43
41
53
46
6.4
[1.0]
-
-
50
47
50
49
1.7
[1.0]
5,000.0
-
-
43
40
54
46
7.4
[1.0]
-
-
55
55
54
55
0.6
[1.1]
4-NQO (0.5)
-
-
230
210
218
219
10.1
[4.8]
-
-
154
161
198
171
23.6
[3.4]
PPT (Precipitation), TOX (Toxicity to bacteria), S.D (Standard deviation), Ratio (The percentage of the mean value compared to the negative control value)
Table 5
Results of the in vitro mammalian chromosomal aberration test
GS (General symptoms), N (Normal), mnPCE (Micronucleated polychromatic erythrocyte), PCE (Polychromatic erythrocyte), NCE (Normochromatic erythrocyte), Ratio (NCE/PCE+NCE)
* Significant difference (p < 0.05) from negative control group (Dunnett’s test).
참고문헌
1. Park M. J., Jin S. R., Oh J. H., Song W. S., Lee H. S., Woo J. H., Hwang K. H., Bae G. H., & Yun Y. C.(2022). Peripheral facial palsy due to cerebellar artery infarction is improved by Korean medical treatment: A case report. The Journal of Internal Korean Medicine;43(2):122-129.
https://doi.org/10.22246/jikm.2022.43.2.122
2. Sim S. Y.(2015). Clinical research of Korean medical treatment for the peripheral facial paralysis. The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology;28(4):62-73.
https://doi.org/10.6114/jkood.2015.28.4.062
3. Lee D. H., Kwon B. I., Yu J. S., Park S. K., & Kim J. H.(2022). Neural mechanisms underlying peripheral facial nerve palsy: A protocol for systematic review and meta-analysis of neuroimaging studies. Medicine;101(48):e32110
https://doi.org/10.1097/MD.0000000000032110
4. Wang C. C., Li L., Tang L. Y., & Leung P. C.(2012). Safety evaluation of commonly used Chinese herbal medicines during pregnancy in mice. Human Reproduction;27(8):2448-2456.
https://doi.org/10.1093/humrep/des180
5. Wang H., Bao Q., Yi H., & Xia Q.The evaluation of embryotoxicity of Ligusticum chuanxiong on mice and embryonic stem cells. Journal of Ethnopharmacology;15(239):111895
https://doi.org/10.1016/j.jep.2019.111895
6. Choi J. S., Han J. Y., Koren G., & Cho Y. K.(2021). Evaluation of fetal and neonatal outcomes after ingestion of Cnidium root (Cnidium officinale Makino) during pregnancy. Early Human Development;161105456
https://doi.org/10.1016/j.earlhumdev.2021.105456
7. Mohamed H. R. H., El-Atawy R. H., Ghoneim A. M., & El-Ghor A. A.(2020). Induction of fetal abnormalities and genotoxicity by molybdenum nanoparticles in pregnant female mice and fetuses. Environmental Science and Pollution Research;27(19):23950-23962.
https://doi.org/10.1007/s11356-020-08137-0
8. Argüelles-Velázquez N., Alvarez-González I., Madrigal-Bujaidar E., & Chamorro-Cevallos G.(2013). Amelioration of cadmium-produced teratogenicity and genotoxicity in mice given arthrospira maxima (Spirulina) treatment. Evidence-Based Complementary and Alternative Medicine;2013604535
https://doi.org/10.1155/2013/604535
9. Phillips D. H., & Arlt V. M.(2009). Genotoxicity: damage to DNA and its consequences. EXS;9987-110.
https://doi.org/10.1007/978-3-7643-8336-7_4
10. De Assis K. R., Ladeira M. S., Bueno R. C., Dos Santos B. F., Dalben I., & Salvadori D. M.(2009). Genotoxicity of cigarette smoking in maternal and newborn lymphocytes. Mutation Research;679(1–2):72-78.
https://doi.org/0.1016/j.mrgentox.2009.02.006
11. Erhirhie E. O., Ihekwereme C. P., & Ilodigwe E. E.(2018). Advances in acute toxicity testing: strengths, weaknesses and regulatory acceptance. Interdisciplinary Toxicology;11(1):5-12.
https://doi.org/10.2478/intox-2018-0001
12. Nair A. B., & Jacob S.(2016). A simple practice guide for dose conversion between animals and human. Journal of Basic and Clinical Pharmacy;7(2):27-31.
https://doi.org/10.4103/0976-0105.177703
13. Hayashi M.(2022). Opinion: regulatory genotoxicity: past, present and future. Genes and Environment;44(1):13
https://doi.org/10.1186/s41021-022-00242-5
14. Levy D. D., Zeiger E., Escobar P. A., Hakura A., van der Leede B. M., Kato M., Moore M. M., & Sugiyama K. I.(2019). Recommended criteria for the evaluation of bacterial mutagenicity data (Ames test). Genetic Toxicology and Environmental Mutagenesis;848403074
https://doi.org/10.1016/j.mrgentox.2019.07.004
15. Sims P., Grover P. L., Swaisland A., Pal K., & Hewer A.(1974). Metabolic activation of benzo(a)pyrene proceeds by a diol-epoxide. Nature;252(5481):326-328.
https://doi.org/10.1038/252326a0
16. Theisen A., & Shaffer L. G.(2010). Disorders caused by chromosome abnormalities. The Application of Clinical Genetic;3159-174.
https://doi.org/10.2147/TACG.S8884
17. Kang S. H., Kwon J. Y., Lee J. K., & Seo Y. R.Recent advances in in vivo genotoxicity testing: prediction of carcinogenic potential using comet and micronucleus assay in animal models. Journal of Cancer Prevention;18(4):277-288.
https://doi.org/10.15430/jcp.2013.18.4.277