hERG Channel-Related Cardiotoxicity Assessment of 13 Herbal Medicines

Article information

J Korean Med. 2021;42(3):44-55
Publication date (electronic) : 2021 September 01
doi : https://doi.org/10.13048/jkm.21024
1KM Science Research Division, Korea Institute of Oriental Medicine
2New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation
Correspondence to: Hyeun-Kyoo Shin, KMD, Ph.D., Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Daejeon 34054, Republic of Korea., Tel: +82-42-868-9464, Fax: +82-42-864-2120, E-mail: hkshin@kiom.re.kr
Received 2021 May 3; Revised 2021 July 8; Accepted 2021 July 28.

Abstract

Objectives

As the use of herbal medicinal products (HMPs) increases worldwide, systematic verification of the safety of HMPs is required. The induction of cardiotoxicity is one of the major factors in post-approval withdrawal of medicinal products, and drug-induced cardiotoxicity assessment is emerging as an important step in drug development. In the present study, we evaluated human ether-à-go-go-related gene (hERG) potassium channel-related cardiotoxicity to predict the risk of cardiac arrhythmia in thirteen herbal medicines known to have cardiac toxicity.

Methods

We measured the inhibition rate of hERG potassium channel activity of 13 medicinal herbal extracts in hERG-expressing HEK 293 cells using an automated patch-clamping system. Quinidine was used as a positive control for inhibition of hERG activity.

Results

Extracts of Evodiae Fructus, Strychni Semen, and Corydalis Tuber potently inhibited the activity of hERG, and IC50 values were 3.158, 19.87, and 41.26 μg/mL, respectively. Cnidi Fructus, Ephedra Herba, Lithospermi Radix, Polygoni Multiflori Radix, Visci Ramulus et Folium, Asiasari Radix et Rhizoma, and Scolopendra weakly inhibited hERG activity, and the IC50 value for each herbal medicine was more than 400 μg/mL. Aconiti Kusnezoffii Tuber and two types of Aconiti Lateralis Radix Preparata (Po and Yeom) had weak inhibitory activity against hERG, and the IC50 values were more than 700 μg/mL. The IC50 value of quinidine against hERG was 1.021 μM.

Conclusion

Evodiae Fructus, Strychni Semen, and Corydalis Tuber acted as potent inhibitors against hERG. These herbal medicines may cause cardiac arrhythmia through QT prolongation, so care should be taken when taking them.

%hERG activity=peak hERG tail current post-sample treatmentpeak hERG tail current pre-sample treatment×100
Fig. 1

hERG potassium channel activity and concentration-response curves of hERG activity by quinidine (hERG inhibitor) and 13 herbal medicines in hERG-HEK 293 cells. (A) Sample voltage-dependent current traces by hERG channel activities pre/post-treatment of quinidine (10 ìM). (B) Concentration dependent inhibition of hERG channel activities by quinidine. (C-O) Concentration dependent inhibition rate of hERG channel activities by 13 herbal medicine extracts. Data are presented as normalized %hERG activities and means ± standard error (n ≥ 4).

The extraction yield of herbal medicines

The IC50 values of quinidine and herbal extracts on hERG potassium channel activity in HEK 293 cells.

References

1. College of oriental medicine. Korean medicine dictionary Seoul: Oriental medical research institute publisher; 1985. p. 139.
2. Shin HD, Jeong JU. 2011;Study of toxicity presence classification about herbal diet in Tang-aec-pyeon of Dong-ui-bo-gam. Journal of Korean Medicine 32(1):12–35.
3. Cho JH, Yoon HI. Essentials of toxicology Seoul: MIP Publishing Group; 2006. p. 349–66.
4. Choi SN, Kwon OB, Lee SO, Seo CS, Shin HK. 2019. Cardiac safety assessment of medicinal herbal formulas using hERG-HEK 293 cell. Journal of Korean Medicine 40(2)94–105. https://doi.org/10.13048/jkm.19020 .
5. Han DH, Kwon KB, Hwang IJ, Kim WK, Kim HC, Oh KS, et al. 2001;Effects of Sylso-san water extract on beating rate in cultured myocardial cells damaged by XO/HX. Korean Journal of Oriental Medical Physiology & Pathology 15(4):566–570.
6. You BS, Jung JE, Park JY, Yun JM, Lee I, Moon BS. 2004;Protective effects of Dohongsamul-tang on Zinc-mediated cytotoxicity in H9c2 cardiomyoblast cells. Korean Journal of Oriental Medical Physiology & Pathology 18(5):1374–1381.
7. Shin MK, Hwang HJ, Kim SC, Byun JS. 2002;Effect of Banhasasim-tang on the cardiac toxicity and clinical symptom induced by doxorubicin. Korean Journal of Oriental Medical Prescription 10(1):131–142.
8. Su CP, Wang Q, Zhang HM, Ren YL, Wang W, Guo SZ. 2020. Literatures analysis on protective role of Chinese herbs on cardiotoxicity induced by chemotherapy drugs. Chinese Journal of Integrated Traditional and Western Medicine 40(7)796–800. https://doi.org/10.7661/j.cjim.20200422.229 .
9. Vicente J, Strauss DG, Upreti VV, Fossler MJ, Sager PT, Noveck R. 2019. The potential role of the J-Tpeak interval in proarrhythmic cardiac safety: Current state of the science from the American College of Clinical Pharmacology and the Cardiac Safety Research Consortium. Journal of Clinical Pharmacology 59(7)909–914. https://doi.org/10.1002/jcph.1411 .
10. National Institute of Food and Drug Safety Evaluationth ed. Guidelines for cardiovascular pharmacology testing. Osong 2020;:1–26.
11. Paul AA, Witchel HJ, Hancox JC. 2002. Inhibition of the current of heterologously expressed HERG potassium channels by flecainide and comparison with quinidine, propafenone and lignocaine. British Journal of Pharmacology 136(5)717–729. https://doi.org/10.1038/sj.bjp.0704784 .
12. Yu R, Li B, Wang YX, Zhu MJ. 2019;Consideration on cardiotoxicity and clinical safety evaluation method of Chinese materia medica. Chinese Traditional and Herbal Drugs 50(18):4485–4489. https://doi.org/10.7501/j.issn.0253-2670.2019.18.031 .
13. Sanguinetti MC, Tristani-Firouzi M. 2006. hERG potassium channels and cardiac arrhythmia. Nature 440(7083)463–469. https://doi.org/10.1038/nature04710 .
14. Wang T, Chen XN, Yu JH, Du QQ, Zhu J, Yang MZ, et al. 2018. High-throughput electrophysiology screen revealed cardiotoxicity of strychnine by selectively targeting hERG channel. American Journal of Chinese Medicine 46(8)1825–1840. https://doi.org/10.1142/S0192415X1850091X .
15. Zhang YH, Yan CC, Wang F, Li BX, Yang BF. 2019. Advances in research on the mechanism of long-QT syndrome caused by traditional Chinese medicine affecting hERG potassium channel. Acta Pharmaceutica Sinica 54(11)1881–1887. https://doi.org/10.16438/j.0513-4870.2019-0369 .
16. Pan XG, Yan BH, Zhou J, Cao XY, Peng C. 2020. Research progress of Chinese Materia Medica-induced cardiotoxicity. Progress in Pharmaceutical Sciences 44(10)p. 730–742.
17. Igor B, Rosanne V, Anja S, Priyanka S, Stanislav B, Phillip S, et al. 2018. Dehydroevodiamine and hortiamine, alkaloids from the traditional Chinese herbal drug Evodia rutaecarpa, are IKr blockers with proarrhythmic effects in vitro and in vivo . Pharmacological Research 131150–163. https://doi.org/10.1016/j.phrs.2018.02.024 .
18. Li MH, Zhang GG, Zhao DH. 1997. Effects of brucine on slow action potentials in guinea pig papillary muscle. Pharmacology and Clinics of Chinese Materia Medica 13(4)19–21. https://doi.org/10.13412/j.cnki.zyyl.1997.04.009 .
19. Meng HX, Yao MJ, Ren JU, Liu JX. 2018. Effects of tertiary alkaloids and quaternary alkaloids of Rhizoma Corydalis on action potential in guinea pig ventricular myocytes and hERG channel currents. World Chinese Medicine 13(1)1–4. https://doi.org/10.3969/j.issn.1673-7202.2018.01.001 .
20. Zhang XD, Yu YM, Fan CL, Zhang YZ. 2009;The protective effects of osthol against adriamycin-induced cardiotoxicity in rats. Modern Pharmacy and Clinic 24(6):358–359.
21. Li L, Zhuang FE, Yang L, Zhang CL, Zhao GS, Zhao DK. 1995;Effects of osthole on isolated guinea pig heart atria. Acta Pharmacologica Sinica 16(3):251–254.
22. Li L, Zhuang FE, Zhang CL, Zhao GS, Zhao DK. 1995;Effects of osthole on slow action potentials and right atria frequency. Chinese Journal of Pharmacology and Toxicology 9(2):108–122.
23. Kwak YG, Kim DK, Ma TZ, Park SA, Park H, Jung YH, et al. 2006. Torilin from Torilis japonica (Houtt.) DC. blocks hKv1.5 channel current. Archives of Pharmacal Research 29(10)834–839. https://doi.org/10.1007/BF02973902 .
24. He YM, Zhong QQ, Wang K, Wang MR, Yang H, Lin JC. 2010;Cardiotoxicity of Ephedra to rabbit model system. Journal of Huazhong Agricultural University 29(4):484–488.
25. Hong LZ, Li JL, Chen YJ, Jin GY. 2007;Effect of Ephedra vulgans Fruit polysaccharide (EVFP) on electric potential of ventricular papillary muscle in rabbits. Lishizhen Medicine and Materia Medica Research 18(6):1367–1368.
26. Gui C, Chen MH, Lin S, Wei YX. 2010;Cytotoxicity effects of shikonin on rat cardiomyocytes in vitro. Pharmacology and Clinics of Chinese Materia Medica 26(6):33–36.
27. Liu M, Yang CI, Meng QX. 2020. Shikonin attenuates hypoxia-reoxygenation-induced injury of cardiomyocyte cell line H9c2. Basic & Clinical Medicine 40(3)380–387. http://journal11.magtechjournal.com/Jwk_jcyxylc/EN/Y2020/V40/I3/380 .
28. Kim WS, Lim SS, Kang HS, Choue CW, Kim KS, Song JS, et al. 2000;Cardiovascular aspects of aconitine poisoning. Korean Circulation Journal 30(7):855–860.
29. Zhang L, Liu CA, Li WH, Liu FL, Zhai XY, Jin C, et al. 2014;Toxic effect and mechanism on rat’s myocardial cell of Radix Aconiti Kusnezoffii and the compatibility of Radix Aconiti Kusnezoffii with Fructus Trichosanthis and Bletillae Rhizoma. Journal of Jiangxi University of Traditional Chinese Medicine 26(2):60–63.
30. Wen YY, Wang LP, Shen ZB, Zhuang SQ, Jiang T, Tang CP. 2019. Effects and mechanism of Aconitum vilmorinianum and its processed product on cardiotoxicity. Journal of Chinese Medicinal Materials 42(06)1277–1282. https://doi.org/10.13863/j.issn1001-4454.2019.06.013 .
31. Ye K, Han Y, Mao P, Wang Z, Huang J, Luan H, et al. 2019. Comparative study on toxicity of Aconiti Kusnezoffii Radix Cocta formula granule and decoctum on H9c2 myocardial cell. Chinese Journal of Modern Applied Pharmacy 36(13)1622–1626. https://doi.org/10.13748/j.cnki.issn1007-7693.2019.13.005 .
32. Feng Q, Luan YF, Sun R, Yan M. 2014;Experimental study on “dose- time- toxicity” relationship of cardiotoxicity induced by multiple doses Aconite water extract on mice. Chinese Journal of Pharmacovigilance 11(10):592–595.
33. 唐恬 赵婷. 2016. 附子及其炮制品对大鼠心脏毒 性的影响. 中国中医急症 25(12)2286–2290. https://doi.org/10.3969/j.issn.1004-745X.2016.12.023 .
34. Zhang X, Song Y, Yang Y, He S, Xie X. 2015;Studies on the acute toxicity of Aconitum Carmichaeli Debx processed products decoction in heart of beagle dogs. Chinese Journal of Ethnomedicine and Ethnopharmacy 24(16):21–23.
35. You J, Zhou ZX, Huang F, Han LT, Li JJ, Wang Q, Dong XY. 2015. Effects of long term toxicity of Asarum on SD rat’s ECG and myocardial enzyme spectrum. Journal of Hubei University of Chinese Med icine 17(4)1–3. https://doi.org/10.3969/j.issn.1008-987x.2015.04.01 .
36. 明海霞 , 陈彦文 , 王强 , 黄世佐 . 2015. 单叶细辛 对家兔心肌的急性毒性作用. Chinese Journal of Gerontology 5(5)1337–1339. https://doi.org/10.3969/j.issn.1005-9202.2015.05.087 .
37. 郭志达 , 吉小莉 . 2000;中药蜈蚣对大鼠心脏毒性 作用的初步研究. Chinese Journal of Clinical Pharmacology and Therapeutics 5(3):278.
38. Wu JX, Yu GR, Wang BY, Zhong DS, Huang DJ. 1994;Effects of Viscum coloration flavonoids on fast response action potentials of hearts. Acta Pharmacologica Sinica 15(2):169–72.
39. Peng W, Wang L, Fu CM, Wu MQ, Tu H, Fu S. 2021. Study on toxicity -efficacy dualism of Fuzi (附子) regarding its anti-heart failure effect and cardiotoxicity: Based on network pharmacology. Journal of Traditional Chinese Medicine 62(6)523–529. https://doi.org/10.13288/j.11-2166/r.2021.06.013 .
40. Li L, Sun ML, Zhang SY, Xue F, Zhang J, Xu TH, et al. 2014. Active ingredient research of antiarrhythmic medicines. World Chinese Medicine 9(9)1241–1243. https://doi.org/10.3969/j.issn.1673-7202.2014.09.039 .

Article information Continued

Fig. 1

hERG potassium channel activity and concentration-response curves of hERG activity by quinidine (hERG inhibitor) and 13 herbal medicines in hERG-HEK 293 cells. (A) Sample voltage-dependent current traces by hERG channel activities pre/post-treatment of quinidine (10 ìM). (B) Concentration dependent inhibition of hERG channel activities by quinidine. (C-O) Concentration dependent inhibition rate of hERG channel activities by 13 herbal medicine extracts. Data are presented as normalized %hERG activities and means ± standard error (n ≥ 4).

Table 1

The extraction yield of herbal medicines

Herbal name Scientific name Family Origin Yield of extract (%)
Aconiti Kusnezoffii Tuber 초오 Aconitum kusnezoffii Reichb. Ranunculaceae Gyeongju, Korea 15.0
Aconiti Lateralis Radix Preparata (Po type) 부자 (포) Aconitum carmichaeli Debeaux Ranunculaceae China 16.7
Aconiti Lateralis Radix Preparata (Yeom type) 부자 (염) Aconitum carmichaeli Debeaux Ranunculaceae China 41.1
Asiasari Radix et Rhizoma 세신 Asiasarum sieboldii Miquel var. seoulense Nakai Aristolochiaceae China 20.2
Cnidi Fructus 사상자 Torilis japonica Decandolle Umbelliferae Mungyeong, Korea 10.9
Corydalis Tuber 현호색 Corydalis ternata Nakai Fumariaceae Sancheong, Korea 12.9
Ephedrae Herba 마황 Ephedra sinica Stapf Ephedraceae China 16.1
Evodiae Fructus 오수유 Evodia rutaecarpa Bentham Rutaceae China 21.9
Lithospermi Radix 자근 Lithospermum erythrorhizon Siebold et Zuccarini Borraginaceae Danyang, Korea 21.8
Polygoni Multiflori Radix 하수오 Polygonum multiflorum Thunberg Polygonaceae China 4.7
Scolopendra 오공 Scolopendra subspinipes mutilans Linné Koch Scolopendridae Indonesia 22.5
Strychni Semen 마전자 Strychnos nux-vomica Linné Loganiaceae China 5.1
Visci Ramulus et Folium 곡기생 Viscum album L. var. coloratum Ohwi Loranthaceae Samcheok, Korea 19.1

Table 2

The IC50 values of quinidine and herbal extracts on hERG potassium channel activity in HEK 293 cells.

Name Abbreviation IC50 (μg/mL)

Quinidine (positive control) 1.021 μM
Aconiti Kusnezoffii Tuber AKT 초오 > 1000
Aconiti Lateralis Radix Preparata (Po type) ALRP_Po 부자 (포) > 1000
Aconiti Lateralis Radix Preparata (Yeom type) ALRP_Yeom 부자 (염) 735.5
Asiasari Radix et Rhizoma ARR 세신 > 1000
Cnidi Fructus CF 사상자 469.0
Corydalis Tuber CT 현호색 41.26
Ephedrae Herba EH 마황 509.5
Evodiae Fructus EF 오수유 3.158
Lithospermi Radix LR 자근 996.5
Polygoni Multiflori Radix PMR 하수오 650.8
Scolopendra SP 오공 > 1000
Strychni Semen SS 마전자 19.87
Visci Ramulus et Folium VRF 곡기생 760.7