Home | Register | Login | Inquiries | Alerts | Sitemap |  


Advanced Search
JKM > Volume 37(1); 2016 > Article
Choi, Jung, and Shin: The Effects of Haedoksamul-tang on Oxidative Stress and Hyperlipidemia in LPS-induced ICR Mouse

Abstract

Objectives:

The present study was conducted to examine whether Haedoksamul-tang (HS), a traditional oriental herbal medicine, have beneficail effects on anti-inflammation and dyslipidemia in lipopolysaccharide (LPS)-induced ICR mouse.

Methods:

Twenty four 8-week old male ICR mouse were divided into four groups: normal untreated; LPS treatment only; HS 10 mg/kg plus LPS treatment; and HS 30 mg/kg plus LPS treatment. HS was orally administered per day for 2days. Twenty-four hours after LPS injection (10 mg/kg/day, i.p.), all the mice were sacrificed, and serological changes were evaluated. The levels of nuclear factor-κB (NF-κB), sterol regulatory element-binding transcription protein 1 (SREBP-1) activity and cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor a (TNF-a), monocyte chemotactic protein 1 (MCP-1), acetyl-CoA carboxylase a (ACCa) expression were analyzed in Western blot analysis.

Results:

HS inhibited oxidative stress in the liver of LPS-induced ICR mice. The LPS-induced ICR mice exhibited the increase of NF-κB activity and COX-2, iNOS, TNF-a, MCP-1 expressions in the liver, while HS treatment significantly inhibited them. Moreover, The administration of HS significantly decreased the elevated serum triglyceride and down-regulated the levels of SREBP-1, ACCa in the liver of LPS-induced ICR mice.

Conclusions:

In conclusion, HS could have hepato-protective effects against the oxidative stress-related inflammation and abnormal lipid metabolism.

Fig. 1.
Inhibition effects of HS on serum and hepatic oxidative stress in LPS-induced ICR mice. Serum ROS (A), hepatic ROS (B), hepatic TBARS (C) levels. N: normal group, Veh: vehicle-treated mice, HS10: HS 10 mg/kg treated mice, HS30: HS 30 mg/kg treated mice. Bars represent means ± SD. ** P < 0.01 versus vehicle-treated mice values.
jkm-37-1-77f1.tif
Fig. 2.
Effects of HS on NF-κBp65 activity in LPS-induced ICR mice liver. N: normal group, Veh: vehicle-treated mice, HS10: HS 10 mg/kg treated mice, HS30: HS 30 mg/kg treated mice. Histone was used for loading control. Bars represent means ± SD. * P < 0.05, *** P < 0.001 versus vehicle-treated mice values.
jkm-37-1-77f2.tif
Fig. 3.
Effects of HS on COX-2 and iNOS expressions in LPS-induced ICR mice liver. COX-2 (A) and iNOS (B) protein expressions in liver. N: normal group, Veh: vehicle -treated mice, HS10: HS 10 mg/kg treated mice, HS30: HS 30 mg/kg treated mice. ß-actin was used for loading control. Bars represent means ± SD. * P < 0.05, ** P < 0.01, *** P < 0.001 versus vehicle-treated mice values.
jkm-37-1-77f3.tif
Fig. 4.
Effects of HS on TNF-a and MCP-1 expressions in LPS-induced ICR mice liver. TNF-a (A) and MCP-1 (B) protein expressions in liver. N: normal group, Veh: vehicle-treated mice, HS10: HS 10 mg/kg treated mice, HS30: HS 30 mg/kg treated mice. ß-actin was used for loading control. Bars represent means ± SD. * P < 0.05, ** P < 0.01, *** P < 0.001 versus vehicle-treated mice values.
jkm-37-1-77f4.tif
Fig. 5.
Effects of HS on serum and hepatic triglyceride levels in LPS-induced ICR mice. Serum triglyceride (A), hepatic triglyceride (B) levels. N: normal group, Veh: vehicle-treated mice, HS10: HS 10 mg/kg treated mice, HS30: HS 30 mg/kg treated mice. Bars represent means ± SD. * P < 0.05, ** P < 0.01, *** P < 0.001 versus vehicle-treated mice values.
jkm-37-1-77f5.tif
Fig. 6.
Effects of HS on SREBP-1 activity and ACCa expression in LPS-induced ICR mice liver. SREBP-1 (A) activity and ACCa (B) protein expression in liver. N: normal group, Veh: vehicle-treated mice, HS10: HS 10 mg/kg treated mice, HS30: HS 30 mg/kg treated mice. Histone or ß-actin was used for loading control. Bars represent means ± SD. * P < 0.05, ** P < 0.01, *** P < 0.001 versus vehicle-treated mice values.
jkm-37-1-77f6.tif
Table 1.
Composition of Haedoksamul-tang
Herb name Scientific name Amounts (g)
黃芩 Scutellaria baicalensis George 4
黃連 Coptis chinensis Franch. 4
黃柏 Phellodendron amurense Ruprecht 4
梔子 Gardenia jasminoides Ellis 4
當歸 Angelica acutiloba (S. et Z.) Kitagawa 4
川芎 Cnidium officinale Makino 4
白芍藥 Paeonia latiflora Pall. 4
生乾地黃 Rehmannia glutinosa (Gaetner) Libosch. 4

Total 32

참고문헌

1.. Johan F. Immunity, atherosclerosis and cardiovascular disease. BMC med;(2013). 11117-29.
crossref

2.. Feng X, Zhang Y, Xu R, Xie X, Tao L, & Gao H, et al. Lipopolysaccharide up-regulates the expression of Fcalpha/mu receptor and promotes the binding of oxidized low-density lipoprotein and its IgM antibody comples to activated human macrophages. Atherosclerosis;(2010). 208396-405.
crossref

3.. Wiesner P, Choi SH, Almazan F, Benner C, Huang W, & Diehl CJ, et al. Low doses of lipopolysaccharide and minimally oxidized low-density lipoprotein cooperatively activate macrophages via nuclear factor kappa B and activator protein-1: possible mechanism for acceleration of atherosclerosis by subclinical endotoxemia. Circ Res;(2010). 10756-65.
crossref

4.. Maitra U, & Li L. Molecular mechanisms responsible for the ruduced expression of cholesterol transporters from macrophages by low-dose endotoxin. Arterioscler Thromb Vasc Biol;(2013). 3324-33.
crossref

5.. Vikatmaa P, Lajunen T, Ikonen TS, Pussinen PJ, Leinonen M, & Saikku P, et al. Chlamydial lipopolysaccharide (cLPS) is present in atherosclerotic and aneurysmal arterial wall--cLPS levels depend on disease manifestation. Cardiovasc Pathol;(2010). 19(1):48-54.
crossref

6.. Jean L, Bret D, & Chistophe C. Systemic capsaicin pretreatment fails to bolck the decrease in food-motivated behavior induced by lipopolysaccharide and interleukin-1ß. Brain Research Bul;(1997). 42443-9.
crossref

7.. Sharifov OF, Nawar G, Ternovov W, Mishra VK, Litovsky SH, & Palqunachare MN, et al. Cationic peptide mR18L with lipid lowering properties inhibits LPS-induced systemic and liver inflammation in rats. Biochem Biophys Res Commun;(2013). 436(4):705-10.
crossref

8.. Kim ID, Kang KS, Kwon RH, Yang JO, Lee JS, & Ha BJ. The effect of Rubus coreanum Miquel against lipopolysaccharide-induced oxidative stress and lipid metaobolism. J. Fd Hyg. Safety;(2007). 22(3):213-7.


9.. Ju JH. Dan-gye-sim-beop-bu-yeo. Seoul. Daesung Publishing Co. Ltd;(1982). p. 714


10.. Lee SI. Cheon-jin-cheo-bang-hea-sheol. Seoul. Sheong-bo-sa;(1995). p. 289-91.


11.. Kim ES. A experimental study of Hwangryeonheadock-Tang and Onchung-Eum on hyperlipidemia & hypertension. J. of Korean Medicine;(1999). 20(1):185-96.


12.. Kim YH, & Jo HB. Anti-inflammatory effects of Haedoksamul-tang in RAW 264.7 cells. J. of Oriental Obstetrics & Gynecology;(2008). 21(2):166-83.


13.. Beom HB. Effects of Onchungeum and Gamionchungeum on the antiallergic response and blood coagulation. J. of Kyung Hee University;(1990). 6(4):490-9.


14.. Jeon YG. Effects of Haedoksamul-tang on Trimelliticanhydride-induced contact hypersensitivity in a mouse model;(2010). 1-41.


15.. Seo M, Jeon BH, Woo WH, & Jeong WY. Effect of Onchengyeum on the damaged liver cell by carbon tetrachloride in rats. Korean J. Oriental Physiology & Pathology;(1989). 11(2):27-36.


16.. Im HJ, Hwang CY, Gang HC, Kim NG, & Gwon IH. Inhibitory effects of Onchumgeum on cytokine production from phytohaemagglutin-stimulated peripheral blood mononuclear cells of behcets patients. Korean J. Oriental Physiology & Pathology;(2002). 16(4):768-73.


17.. Zhu GF, Guo HJ, Huang Y, Wu CT, & Zhang XF. Eriodictyol, a plant flavonoid, attenuates LPS-induced acute lung injury through its antioxidative and anti-inflammatory activity. Exp Ther Med;(2015). 10(6):2259-66.
crossref

18.. Heo J. Dong-ui-bo-gam. Seoul. Bubin Publishing Co. Ltd;(2007). 416:p. 455


19.. Rush GF, Gorski JR, Ripple MG, Sowinski J, & Bugelski P. Organic hydroperoxide -induced lipid peroxidation and cell death in isolated hepatocytes. Toxicol Appl Pharmacol;(1985). 78473-83.
crossref

20.. Izeboud CA, Hoebe KH, Grootendorst AF, Nijmeijer SM, van Miert AS, & Witkamp RF, et al. Endotoxin-induced liver damage in rats is minimized by beta 2-adrenoceptor stimulation. Inflamm Res;(2004). 5393-9.
crossref

21.. Munford RS. Severe sepsis and septic sock: the role of gram-negative bacteremia. Annu Rev Pathol;(2006). 1467-96.
crossref

22.. Kleemann R, Verschuren L, van Erk M, Nikolsky Y, Verheij ER, & Smilde AK, et al. Atherosclerosis and liver inflammation induced by increased dietary cholesterol intake: a combined transcriptomics and metabolomics analysis. Genome Biol;(2007). 8R200
crossref

23.. Xu X, Hu J, McGrath BC, & Cavener DR. GCN2 in the brain programs PPARγ2 and triglyceride storage in the liver during perinatal development in response to maternal dietary fat. PLos One;(2013). 8(10):e75917
crossref

24.. Liu RH, & Hotchkiss JH. Potential genotoxicity of chronically elevated nitirc oxide: a review. Mutat. Res;(1996). 33973-89.
crossref

25.. Collins T, & Cybulsky MI. NF-kappaB: pivotal mediator or innocent bystander in atherogenesis. J Clin Invest;(2001). 107255-64.
crossref

26.. Thuberg BL, & Collins T. The nuclear factor-B/inhibitor of B autoregulatory system and atherosclerosis. Curr Opin Lipidol;(1998). 9387-96.
crossref

27.. Wang QS, Xiang Y, Cui YL, Lin KM, & Zhang XF. Dietary blue pigments derived from Genipin, attenuate inflammation by inhibiting LPS-Induced iNOS and COX-2 expression via the NF-κB inactivation. PLos One;(2012). 7(3):1-11.
crossref

28.. Kwon HJ, Sung BK, Kim JW, Lee JH, Kim ND, & Yoo MA, et al. The effect of lipopolysaccharide on enhanced inflammatory process with age: modulation of NF-κB. J. Amer. Aging Assoc;(2001). 24163-72.
crossref

29.. Napoli C, de Nigris F, Williams-Ignarro S, Pignalosa O, Sica V, & Ignarro LJ. Nitric oxide and atherosclerosis: an update. Nitric Oxide;(2006). 15265-79.
crossref

30.. Baldwin AS. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol;(1996). 14649-83.
crossref

31.. DeGraba TJ. Expression of inflammatory mediators and adhesion molecules in human atherosclerotic plaque. Neurology;(1997). 49(Supple 4):S15-9.
crossref

32.. Fassbender K, Rossol S, Kammer T, Daffertshofer M, Wirth S, & Dollman M, et al. Proinflammatory cytokines in serum of patients with acute cerebral ischemia: kinetics of secretion and relation to the extent of brain damage and outcome of disease. J Neurol Sci;(1994). 122(2):135-9.
crossref

33.. Adams DH, & Lioyd AF. Chemokines: leukocyte recruitment and activation cytokines. Lancet;(1997). 349490-5.
crossref

34.. Brown MS, & Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell;(1997). 89331-40.
crossref

35.. Weber LW, Boll M, & Stampfl A. Maintaining cholesterol homeostasis: sterol regulatory element-binding proteins. World J Gastroenterol;(2004). 10(21):3081-7.
crossref

36.. Horton JD, Goldstein JL, & Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest;(2002). 1091125-31.
crossref

37.. Foufelle F, & Ferre P. New perspectives in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose: a role for the transcription factor sterol regulatory element binding protein-1c. Biochem J;(2002). 366377-91.
crossref

38.. Ferre P, Foretz M, Azzout-Marniche D, Becard D, & Foufelle F. Sterol-regulatory-element-binding protein 1c mediates insulin action on hepatic gene expression. Biochemical Society Transactions;(2001). 29(4):547-52.
crossref

39.. Horton JD. Sterol regulatory element-binding proteins: transcriptional activators of lipid synthesis. Biochemical Society Transactions;(2001). 30(6):1091-5.
crossref

40.. Tong L. Acetyl-coenzyme A carboxylase: crucial metabolic enzyme and attractive target for drug discovery. Cell Mol Life Sci;(2005). 62(16):1784-803.
crossref

41.. Munday MR. Regulation of mammalian acetyl-CoA carboxylase. Biochem Soc Trans;(2002). 30(6):1059-64.
crossref

Editorial office contact information
3F, #26-27 Gayang-dong, Gangseo-gu Seoul, 157-200 Seoul, Korea
The Society of Korean Medicine
Tel : +82-2-2658-3627   Fax : +82-2-2658-3631   E-mail : skom1953.journal@gmail.com
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Developed in M2PI